Abstract

AbstractThis work presents a sensitive voltammetric method for determination of the flavonoid baicalein by using a thermally reduced graphene oxide (TRGO) modified glassy carbon electrode (GCE) in 100 mM KCl‐10 mM sodium phosphate buffer solution (pH 7.40). The surface morphology and structure of TRGO investigated by atomic force microscopy, FT‐IR spectroscopy and Raman spectroscopy reveal that the TRGO prepared maintained as single or bilayer sheets and with significant edge‐plane‐like defect sites. The TRGO/GCE modified electrode shows more favorable electron transfer kinetics for potassium ferricyanide and potassium ferrocyanide probe molecules, which are important electroactive compounds, compared with bare GCE and GO/GCE electrodes. The electrochemical behaviors of baicalein at the TRGO/GCE were investigated by cyclic voltammetry, suggesting that the TRGO/GCE exhibits excellent electrocatalytic activity to baicalein. Under physiological conditions, the modified electrode showed linear voltammetric response from 10 nM to 10 µM for baicalein, with a detection limit of 6.0 nM. This work demonstrates that the graphene‐modified electrode is a promising tool for electrochemical determination of flavonoid drugs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call