Abstract

In traditional oligodeoxynucleotide (ODN) synthesis, phosphate groups are protected with the 2-cyanoethyl group, and amino groups are protected with acyl groups. At the end of ODN synthesis, deprotection is achieved with strong bases and nucleophiles. Therefore, traditional technologies are not suitable for the synthesis of ODNs containing sensitive functionalities. To address the problem, we report the use of Dim and Dmoc groups, which are based on the 1,3-dithian-2-yl-methyl function, for phosphate and amine protection for the solid phase ODN synthesis. Using the new Dim-Dmoc protection, deprotection was achieved under mild oxidative conditions without using any strong bases and nucleophiles. As a result, the new technology is suitable for the synthesis of ODNs containing sensitive functions. To demonstrate feasibility, seven 20-mer ODNs including four that contain sensitive ester and alkyl chloride groups were synthesized, purified with RP HPLC, and characterized with MALDI-TOF MS and enzyme digestion essays. High purity ODNs were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.