Abstract

The cleavage-site specificities for many proteases are not well understood, restricting the utility of supervised classification methods. We present an algorithm and web interface to overcome this limitation through the unsupervised detection of overrepresented patterns in protein sequence data, providing insight into the mixture of protease activities contributing to a complex system. Here, we apply the RObust LInear Motif Deconvolution (RoLiM) algorithm to confidently detect substrate cleavage patterns for SARS-CoV-2 MPro protease in the N-terminome data of an infected human cell line. Using mass spectrometry-based peptide data from a case-control comparison of 341 primary urothelial bladder cancer cases and 110 controls, we identified distinct sequence motifs indicative of increased matrix metallopeptidase activity in urine from cancer patients. The evaluation of N-terminal peptides from patient plasma post-chemotherapy detected novel granzyme B/corin activity. RoLiM will enhance the unbiased investigation of peptide sequences to establish the composition of known and uncharacterized protease activities in biological systems. RoLiM is available at http://langelab.org/rolim/.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.