Abstract

A simple, fast, and direct mix-and-read spectrofluorimetric method has been developed for the sensitive determination of naftazone (NFZ) utilizing graphene quantum dots (GQDs) as a greener and highly luminescent nanosensor. NFZ effectively quenches the strong fluorescence of GQDs at λex/λem of 350/440 nm via the inner filter effect mechanism. The nanosensor exhibits excellent linearity for NFZ over the concentration range of 0.46 to 186 μM with a limit of detection of 0.04 μM. The proposed method was validated for the successful determination of NFZ in tablets and on manufacturing equipment surfaces with good % recoveries of 98.4–101.6 and 96.3 – 102.2%, respectively. Furthermore, an integrated smartphone-based reader has been implemented and successfully applied for the determination of NFZ. The smartphone-based reader consists of a 365 nm UV torch as an excitation source, a smartphone for recording images, and smartphone-powered image analysis software for signal interpretation, together with a paper-based analytical device (PAD) utilizing filter paper as a substrate and correction fluid as a barrier for creation of detection zones. This smart platform showed excellent sensitivity with a limit of detection down to 0.12 nmol/zone, and it could be used for in-site determination of NFZ, especially for the limited resources laboratories.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call