Abstract
A paper-based analytical device (PADs) combined with a powerful chemiluminescence (CL) system was established for the determination of deltamethrin (DM), based on the enhancing effect of polyphosphate (PP) on graphene quantum dots (GQDs)-KMnO4 CL reaction. A possible mechanism for the obtained emission was proposed using the CL spectra, fluorescence and ultraviolet-visible patterns. The reaction of KMnO4 and GQDs can lead to generation of GQDs in excited state (GQDs*), which can emit at 490 nm. Interestingly, PP changes the CL mechanism and the main emitter becomes Mn2+ instead of GQDs leading to a strong emission at 695 nm. Furthermore, the obtained multi-emission CL system was examined for analytical applications. The initial experiments showed that the amplified CL emission of the GQDs-KMnO4 system was selectively quenched in the presence of trace levels of DM, probably due to its effective interaction with GQDs or reaction with KMnO4. This observation led to a facile, reliable and sensitive PADs-CL probe, developed for the determination of DM residue in food samples. Using this CL system and under the optimized experimental conditions, the generated signal is decreased by increasing DM concentration in the range of 0.3−10 μg mL-1 with limit of detection (LOD) of 0.15 μg mL-1.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.