Abstract

A new spectroflurometric method for the determination of adenosine disodium triphosphate (ATP) is developed. Fluorometric interaction between ATP and enoxacin (ENX)–Eu 3+ complex was studied using UV–vis and fluorescence spectroscopy. Weak luminescence spectra of Eu 3+ were enhanced after complexation with ENX at 589 nm and 614 nm upon excitation at 395 nm due to energy transfer from the ligand to the lanthanide ion. It was observed that luminescence spectrum of Eu 3+ was strongly enhanced further at 614 nm after incorporation of ATP into the ENX–Eu 3+ complex. Under optimal conditions, the enhancement of luminescence at 614 nm was responded linearly with the concentration of ATP. The linearity was maintained in the range of 1.5×10 −10–1.15×10 −8 M ( R=0.9973) with the limit of detection (3σ) of 4.71×10 −11 M. The relative standard deviation (RSD) for 9 repeated measurements of 1×10 −9 M ATP was 1.25%. Successful determinations of ATP in soil, milk, and a pharmaceutical formulation with the proposed method were demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call