Abstract
In this paper the use of the cellular neural network (CNN) paradigm is investigated for the vision-based real-time guidance of robots. This paradigm is employed in recovering information on the tridimensional structure of the environment, through the resolution of the static and the lateral motion stereo vision problems. The proposed approaches exploit the spontaneous internal energy decrease of the CNN, coding the problem in terms of an optimisation task. Results of computer simulations on some test cases for the two different issues are provided. The performance of a hardware implementation of these networks for the tasks presented is outlined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Engineering Applications of Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.