Abstract

This paper illustrates a new object-oriented segmentation algorithm based on the cellular neural network (CNN) paradigm. The approach, which exploits rigorous model of the image contours, presents two remarkable features: 1) it provides more accurate segmented objects than the ones obtained by other CNN-based techniques; 2) it makes use of CNN templates that take into account the hardware characteristics imposed by the CNNUM. Results carried out for benchmark video sequences highlight the capabilities of the proposed technique.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.