Abstract

In this paper, the enhancement of gas sensing response due to addition of tin into Cr2O3 has been reported. Sn-doped Cr2O3 nanoparticles have been prepared by a co-precipitation method and characterised by X-ray diffraction, field emission scanning electron microscopy and energy dispersive X-ray analysis. X-ray diffraction studies revealed the substitution of Cr3+ ions by Sn4+ ions. Field emission scanning electron microscopy images exhibited presence of clusters and agglomerates on the surface. The concentration of tin, used as dopant, was varied from 1 to 5 wt.% and its effect on gas sensing response has been studied. Synthesised powders were applied as thick film onto alumina substrate and tested for ethanol sensing at different operating temperatures and all the sensors gave an optimum response at 250 ∘C. The activation energy of conduction for all the samples was estimated using Arrhenius plots and it was observed that the sample doped with 4 wt.% Sn possesses minimum activation energy, and interestingly this sample gave the best sensing response in the lot.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.