Abstract

Indium arsenide (InAs) nanowire (NW) field effect transistors (FETs) were incorporated into a microfluidic channel to detect the flow rate change as well as to harvest fluid flow energy for electric power generation. Discrete changes in the electric current through InAs NW FETs were observed upon flow rate changes at steps of 1 mL/h (equivalent to ~3 mm/s change in average linear velocity). The current also showed a sign change upon reversing flow direction. By comparing the response of the device with and without a driving voltage between source-drain electrodes, we conclude that the dominant contribution in the response is the streaming potential tuned conductance of NW. In the absence of source-drain voltage, we further demonstrate that the ionic flow could enable generation of an ~mV electrical potential (or ~nA electrical current) inside the InAs NW per mL/h increase of flow rate, most likely due to the charge dragging effect.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call