Abstract

In this study, by carrying out detailed density functional theory calculations, we investigate the adsorption and stepwise decomposition of hydrogen peroxide (H2O2) over (6,0) and (7,0) zigzag silicon carbide nanotubes (SiCNTs). The results indicate that the H2O2 can be adsorbed on the exterior surface of the SiCNTs with noticeable adsorption energies and charge transfers. To gain insight into the catalytic activity of the surface, the interaction between the H2O2 and SiCNT is analyzed by detailed electronic analysis such as adsorption energy, charge density difference and activation barrier. The decomposition of H2O2 into O2 and H2 species can be viewed as the kinetically preferred reaction pathway for dehydrogenation of hydrogen peroxide over SiCNTs. There is also a curvature effect on the dehydrogenation kinetics of hydrogen peroxide, that small diameter SiCNTs with large curvature would be beneficial for decomposition of H2O2. © 2015 Wiley Periodicals, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call