Abstract

We report the sensing characteristic based on plasmon induced transparency in nanocavity-coupled metal-dielectric-metal waveguide analytically and numerically. A simple model for the sensing nature is first presented by the coupled mode theory. We show that the coupling strength and the resonance detuning play important roles in optimizing the sensing performance and the detection limit of sensor, and an interesting double-peak sensing is also obtained in such plasmonic sensor. In addition, the specific refractive index width of the dielectric environment is discovered in slow-light sensing and the relevant sensitivity can be enhanced. The proposed model and findings provide guidance for fundamental research of the integrated plasmonic nanosensor applications and designs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.