Abstract

Plasmonic sensors exhibit enormous potential in the areas of environmental monitoring, biomedical diagnostics, healthcare, food safety, security, and chemical reactions. However, the large bandwidths of surface-plasmon response spectra greatly reduce the sensitivities and detection limits of plasmonic sensors. Herein, we propose to tilt a metallic nano-groove array to reduce linewidths of Fano resonances, and the figure of merit (FOM) of a refractive index sensor is greatly increased. The Fano resonances stem from interference between narrow SPP resonant modes and a broad LSP mode in the metallic nano-groove array. When tilting the metallic nano-groove array, new Fano resonances emerge, greatly compressing the linewidth of Fano resonance of interest to ∼1.1 nm in the simulation. Experimentally, a narrow Fano resonance with a linewidth of Δλ≈2.5 nm is achieved, and a high-FOM (FOM ≈ 263) plasmonic sensor is demonstrated. This value of FOM is more than 4.7 times that (FOM ≤ 55) of Fano sensors based on SPP modes, and it is even approximately twice that (FOM ≈ 140) of the previous Fano sensor based on Wood's Anomaly.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call