Abstract

Organ senescence is an important developmental process in plants that enables recycling of nutrients, such as nitrogen, to maximize reproductive success. Nitrogen is the mineral nutrient required in greatest amount by plants, although soil-N limits plant productivity in many natural and agricultural systems, especially systems that receive little or no fertilizer-N. Use of industrial N-fertilizers in agriculture increased crop yields several fold over the past century, although at substantial cost to fossil energy reserves and the environment. Therefore, it is important to optimize nitrogen use efficiency (NUE) in agricultural systems. Organ senescence contributes to NUE in plants and manipulation of senescence in plant breeding programs is a promising approach to improve NUE in agriculture. Much of what we know about plant senescence comes from research on annual plants, which provide most of the food for humans. Relatively little work has been done on senescence in perennial plants, especially perennial grasses, which provide much of the forage for grazing animals and promise to supply much of the biomass required by the future biofuel industry. Here, we review briefly what is known about senescence from studies of annual plants, before presenting current knowledge about senescence in perennial grasses and its relationship to yield, quality, and NUE. While higher yield is a common target, desired N-content diverges between forage and biofuel crops. We discuss how senescence programs might be altered to produce high-yielding, stress-tolerant perennial grasses with high-N (protein) for forage or low-N for biofuels in systems optimized for NUE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call