Abstract

Hydrogen sulfide regulates essential plant processes, including adaptation responses to stress situations, and the best characterized mechanism of action of sulfide consists of the posttranslational modification of persulfidation. In this study, we reveal the first persulfidation proteome described in rice including 3443 different persulfidated proteins that participate in a broad range of biological processes and metabolic pathways. In addition, comparative proteomics revealed specific proteins involved in sulfide signaling during drought responses. Several proteins involved in the maintenance of cellular redox homeostasis, the TCA cycle and energy-related pathways, and ion transmembrane transport and cellular water homeostasis, highlighting the aquaporin family, showed the highest differential levels of persulfidation. We revealed that water transport activity is regulated by sulfide which correlates to an increasing level of persulfidation of aquaporins. Our findings emphasize the impact of persulfidation on total ATP levels, fatty acid composition, ROS levels, antioxidant enzymatic activities, and relative water content. Interestingly, the persulfidation role on aquaporin transport activity as an adaptation response in rice differs from the current knowledge in Arabidopsis, which emphasizes the distinct role of sulfide improving rice tolerance to drought.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call