Abstract

During brain ageing, microglia, the resident immune cells of the CNS, are immunologically activated and contribute to neuroinflammation, a vicious cycle that supports development of neurological disorders. Therapeutic approaches focus mainly on downregulation of their pro-inflammatory activated state that is associated with health benefits. Electrophilic compounds, such as natural quinones and their reduced pro-electrophilic precursors, flavonoids, represent a wide group of diverse substances with important biological effects. They can cause considerable cytotoxicity when used at higher dosages, but on the other hand, they have versatile health benefits at lower dosages.In this study, we investigated the cytotoxicity and prooxidant profile of synthetic conjugate of two electrophilic compounds, quercetin and 1,4-naphthoquinone, 4′-O-(2-chloro-1,4-naphthoquinone-3-yloxy) quercetin (CHNQ), and its attenuation of inflammatory responses and modulation of Nrf2 pathway in BV-2 microglial cells. CHNQ showed higher cytotoxicity than its precursors, accompanied by promotion of production of reactive oxygen species along with G2/M cell cycle arrest at higher concentrations tested. Nevertheless, at a lower non-toxic concentration, CHNQ, more significantly than did its precursors, downregulated LPS-stimulated microglia cells as documented by decreased iNOS, COX-2 and TNFα protein levels. Moreover, CHNQ most effectively upregulated expression of phase II antioxidant enzyme HO-1 and β5 subunit of constitutive proteasome. The enhanced anti-inflammatory effect of CHNQ was accompanied by prominent increase in cytosolic expression of Nrf2 and c-Jun, however, induction effect on nuclear Nrf2 translocation was comparable to QUER. Moreover, a conditioned medium from activated BV-2 cells co-treated with quercetin and CHNQ maintained viability of neuron-like PC12 cells. The compounds tested did not show any disturbance of phagocytosis of live or dead PC12 cells.The present experimental data predict a preventive and therapeutic potential of semisynthetic derivative CHNQ in ageing and related pathologies, mediated by activation of proteins of the antioxidant response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call