Abstract

This paper is devoted to enchasing existing multi-view semi-supervised ensemble learning algorithms by introducing a cross-view consensus. A detailed overview of three state-of-the-art methods is given, with relevant steps of the training highlighted. A problem statement is formed to introduce both semi-supervised framework and consider the semi-supervised learning in the context of optimization problem. A novel multi-view semi-supervised ensemble learning algorithm called multi-view semi-supervised cross consensus (MSSXC) is introduced. The algorithm is tested against 5 synthetic datasets designed for semi-supervised learning challenges. The results indicate improvement in the average accuracy of up to 10% in comparison to existing methods, especially in low-volume, high density scenarios.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.