Abstract
The trichotomy between regular, semiregular, and strongly irregular boundary points for p-harmonic functions is obtained for unbounded open sets in complete metric spaces with a doubling measure supporting a p-Poincaré inequality, 1<p<infty . We show that these are local properties. We also deduce several characterizations of semiregular points and strongly irregular points. In particular, semiregular points are characterized by means of capacity, p-harmonic measures, removability, and semibarriers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.