Abstract

A novel approach is suggested for the statistical description of quantum systems of interacting particles. We show that the occupation numbers for single-particle states can be represented as a convolution of a classical analog of the eigenstate, with the quantum occupation number for noninteracting particles. The latter takes into account the wave function symmetry and depends on the unperturbed energy spectrum only. As a result, the distribution of occupation numbers n(s) can be found even for a large number of interacting particles. Using the model of interacting spins, we demonstrate that this approach gives a correct description of n(s) even in deep quantum regions with few single-particle orbitals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.