Abstract
Multivariate current-status data are frequently encountered in biomedical and public health studies. Semiparametric regression models have been extensively studied for univariate current-status data, but most existing estimation procedures are computationally intensive, involving either penalization or smoothing techniques. It becomes more challenging for the analysis of multivariate current-status data. In this article, we study the maximum likelihood estimations for univariate and bivariate current-status data under the semiparametric probit regression models. We present a simple computational procedure combining the expectation-maximization algorithm with the pool-adjacent-violators algorithm for solving the monotone constraint on the baseline function. Asymptotic properties of the maximum likelihood estimators are investigated, including the calculation of the explicit information bound for univariate current-status data, as well as the asymptotic consistency and convergence rate for bivariate current-status data. Extensive simulation studies showed that the proposed computational procedures performed well under small or moderate sample sizes. We demonstrate the estimation procedure with two real data examples in the areas of diabetic and HIV research.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.