Abstract
In this paper, we propose new semiparametric procedures for inference on linear functionals in the context of two semicontinuous populations. The distribution of each semicontinuous population is characterized by a mixture of a discrete point mass at zero and a continuous skewed positive component. To utilize the information from both populations, we model the positive components of the two mixture distributions via a semiparametric density ratio model. Under this model setup, we construct the maximum empirical likelihood estimators of the linear functionals. The asymptotic normality of the proposed estimators is established and is used to construct confidence regions and perform hypothesis tests for these functionals. We show that the proposed estimators are more efficient than the fully nonparametric ones. Simulation studies demonstrate the advantages of our method over existing methods. Two real-data examples are provided for illustration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Annals of the Institute of Statistical Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.