Abstract

The manner in which two random variables influence one another often depends on covariates. A way to model this dependence is via a conditional copula function. This paper contributes to the study of semiparametric estimation of conditional copulas by starting from a parametric copula function in which the parameter varies with a covariate, and leaving the marginals unspecified. Consequently, the unknown parts in the model are the parameter function and the unknown marginals. The authors use a local pseudo-likelihood with nonparametrically estimated marginals approximating the unknown parameter function locally by a polynomial. Under this general setting, they prove the consistency of the estimators of the parameter function as well as its derivatives; they also establish asymptotic normality. Furthermore, they derive an expression for the theoretical optimal bandwidth and discuss practical bandwidth selection. They illustrate the performance of the estimation procedure with data-driven bandwidth selection via a simulation study and a real-data case.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.