Abstract
We study the birational properties of geometrically rational surfaces from a derived categorical perspective. In particular, we give a criterion for the rationality of a del Pezzo surface S over an arbitrary field, namely, that its derived category decomposes into zero-dimensional components. When S has degree at least 5 we construct explicit semiorthogonal decompositions by subcategories of modules over semisimple algebras arising as endomorphism algebras of vector bundles and we show how to retrieve information about the index of S from Brauer classes and Chern classes associated to these vector bundles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.