Abstract
AbstractIn this paper, we study analytic self‐maps of the unit disk which distort hyperbolic areas of large hyperbolic disks by a bounded amount. We give a number of characterizations involving angular derivatives, Lipschitz extensions, Möbius distortion, the distribution of critical points and Aleksandrov–Clark measures. We also examine the Lyapunov exponents of their Aleksandrov–Clark measures.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have