Abstract
We present a semilocal convergence study of Newton-like methods on a generalized Banach space setting to approximate a locally unique zero of an operator. Earlier studies such as [5], [6], [7], [14] require that the operator involved is Fréchet-differentiable. In the present study we assume that the operator is only continuous. This way we extend the applicability of Newton-like methods to include fractional calculus and problems from other areas. Some applications include fractional calculus involving the Riemann-Liouville fractional integral and the Caputo fractional derivative. Fractional calculus is very important for its applications in many applied sciences.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Numerical Analysis and Approximation Theory
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.