Abstract
We consider hyperbolic inequalities with Hardy potential u t t − Δ u + λ | x | 2 u ⩾ | x | − a | u | p in ( 0 , ∞ ) × B 1 ∖ { 0 } , u ( t , x ) ⩾ f ( x ) on ( 0 , ∞ ) × ∂ B 1 , where B 1 is the unit ball in R N , N ⩾ 3, λ > − ( N − 2 2 ) 2 , a ⩾ 0, p > 1 and f is a nontrivial L 1 -function. We study separately the cases: λ = 0, − ( N − 2 2 ) 2 < λ < 0 and λ > 0. For each case, we obtain an optimal criterium for the nonexistence of weak solutions. Our study yields naturally optimal nonexistence results for the corresponding stationary problem. The novelty of this work lies in two facts: (i) To the best of our knowledge, in all previous works dealing with nonexistence results for evolution equations with Hardy potential in a bounded domain, only the parabolic case has been investigated, making use of some comparison principles. (ii) To the best of our knowledge, in all previous works, the issue of nonexistence has been studied only in the case of positive solutions. In this paper, there is no restriction on the sign of solutions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.