Abstract

Quantum key agreement (QKA) is an important branch of quantum cryptography. In this paper, we propose a mutual authenticated semi-honest key agreement scheme with Greenberger-Home-Zeilinger-like (GHZ-like) state. A semi-honest third-party Trent can help Alice and Bob to achieve mutual authentication and key agreement without getting any information about the session key between them. Firstly, Alice and Bob have shared necessary information with Trent respectively in a secure way, and keep each other confidential. Trent prepares the three-particle GHZ-like states and shares them with Alice and Bob. Secondly, Trent uses hash security function to get a set with equal subscripts, and then divides into authentication set and negotiation set. The authentication set is used to realize the security authentication of three-party identities, while the negotiation set is used for negotiating the session key. Finally, on the premise of passing the three-party authentication, Alice and Bob carry out the GHZ-like states encryption communication according to the negotiation subset provided by the third party. Through security analysis and efficiency analysis, our proposed protocol can effectively resist external eavesdropping and internal eavesdropping, and have high communication efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.