Abstract

In order to investigate the relationship between weak amenability and the Haagerup property for groups, we introduce the weak Haagerup property, and we prove that having this approximation property is equivalent to the existence of a semigroup of Herz–Schur multipliers generated by a proper function (see Theorem 1.2). It is then shown that a (not necessarily proper) generator of a semigroup of Herz–Schur multipliers splits into a positive definite kernel and a conditionally negative definite kernel. We also show that the generator has a particularly pleasant form if and only if the group is amenable. In the second half of the paper we study semigroups of radial Herz–Schur multipliers on free groups. We prove that a generator of such a semigroup is linearly bounded by the word length function (see Theorem 1.6).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.