Abstract

This is a survey of some aspects of the subject of approximation properties for locally compact quantum groups, based on lectures given at the {\it Topological Quantum Groups} Graduate School, 28 June - 11 July, 2015 in Bedlewo, Poland. We begin with a study of the dual notions of amenability and co-amenability, and then consider weakenings of these properties in the form of the Haagerup property and weak amenability. For discrete quantum groups, the interaction between these properties and various operator algebra approximation properties are investigated. We also study the connection between central approximation properties for discrete quantum groups and monoidal equivalence for their compact duals. We finish by discussing the central weak amenability and central Haagerup property for free quantum groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.