Abstract

Variational problems that involve Wasserstein distances and more generally optimal transport (OT) theory are playing an increasingly important role in data sciences. Such problems can be used to form an exemplar measure out of various probability measures, as in the Wasserstein barycenter problem, or to carry out parametric inference and density fitting, where the loss is measured in terms of an optimal transport cost to the measure of observations. Despite being conceptually simple, such problems are computationally challenging because they involve minimizing over quantities (Wasserstein distances) that are themselves hard to compute. Entropic regularization has recently emerged as an efficient tool to approximate the solution of such variational Wasserstein problems. In this paper, we give a thorough duality tour of these regularization techniques. In particular, we show how important concepts from classical OT such as $c$-transforms and semidiscrete approaches translate into similar ideas in a regularized setting. These dual formulations lead to smooth variational problems, which can be solved using smooth, differentiable, and convex optimization problems that are simpler to implement and numerically more stable than their unregularized counterparts. We illustrate the versatility of this approach by applying it to the computation of Wasserstein barycenters and gradient flows of spatial regularization functionals.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.