Abstract

Wasserstein barycenters correspond to optimal solutions of transportation problems for several marginals, and as such have a wide range of applications ranging from economics to statistics and computer science. When the marginal probability measures are absolutely continuous (or vanish on small sets) the theory of Wasserstein barycenters is well-developed [see the seminal paper (Agueh and Carlier in SIAM J Math Anal 43(2):904–924, 2011)]. However, exact continuous computation of Wasserstein barycenters in this setting is tractable in only a small number of specialized cases. Moreover, in many applications data is given as a set of probability measures with finite support. In this paper, we develop theoretical results for Wasserstein barycenters in this discrete setting. Our results rely heavily on polyhedral theory which is possible due to the discrete structure of the marginals. The results closely mirror those in the continuous case with a few exceptions. In this discrete setting we establish that Wasserstein barycenters must also be discrete measures and there is always a barycenter which is provably sparse. Moreover, for each Wasserstein barycenter there exists a non-mass-splitting optimal transport to each of the discrete marginals. Such non-mass-splitting transports do not generally exist between two discrete measures unless special mass balance conditions hold. This makes Wasserstein barycenters in this discrete setting special in this regard. We illustrate the results of our discrete barycenter theory with a proof-of-concept computation for a hypothetical transportation problem with multiple marginals: distributing a fixed set of goods when the demand can take on different distributional shapes characterized by the discrete marginal distributions. A Wasserstein barycenter, in this case, represents an optimal distribution of inventory facilities which minimize the squared distance/transportation cost totaled over all demands.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.