Abstract

The paper presents the design, evaluation and performance comparison of cell based, low power adiabatic adder circuits operated by two-phase sinusoidal power clock signals, as against the literatures providing the operation of various adiabatic circuits, focusing on inverter circuits and logic gates, powered by ramp, three phase and four phase clock signals. The cells are designed for the quasi-adiabatic families, namely, 2N2P, 2N2N2P, PFAL, ADSL and IPGL for configuring complex adder circuits. A family of adiabatic cell based designs for carry lookahead adders and tree adders were designed. The simulations prove that the cell based design of tree adder circuits can save energy ranging from 2 to 100 over a frequency range of operation of 2MHz to 200MHz against the static CMOS circuit implementation. The schematic edit and T-Spice of Tanner tools formed the simulation environment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.