Abstract

In this study, semiconducting organic polymer dots (Pdots) and inorganic quantum dots (Qdots) were first utilized to construct the organic-inorganic nanodots heterojunction for the photoelectrochemical (PEC) bioanalysis application. Specifically, n-type CdS Qdots, p-type CdTe Qdots, and tetraphenylporphyrin (TPP)-doped poly[(9,9-dioctylfluorenyl-2,7-diyl)- co-(1,4-benzo-{2,1',3}-thiadazole)] (PFBT) Pdots were fabricated, and their energy levels, that is, their valence band (VB)/conduction band (CB) or lowest unoccupied molecular orbital (LUMO)/highest occupied molecular orbital (HOMO) values, were also determined. Then, these nanodots were integrated to construct four types of p-n and p-p organic-inorganic nanodots heterojunctions, that is, CdS Qdots/TPP-doped PFBT Pdots, TPP-doped PFBT Pdots/CdS Qdots, CdTe Qdots/TPP-doped PFBT Pdots, and TPP-doped PFBT Pdots/CdTe Qdots, on the transparent glass electrode. Upon light irradiation, four heterojunctions exhibited different PEC behaviors with some having prominent photocurrent enhancement. With the model molecule l-cysteine (l-cys) as target, the proposed PEC sensor exhibited good performances. In brief, this work presents the first semiconducting organic-inorganic nanodots heterojunction for PEC bioanalysis application, which could be easily used as a general platform for future PEC bioanalysis building. Besides, it is expected to inspire more interest in the design, development, and implementation of various organic-inorganic heterojunctions for advanced PEC bioanalysis in the future.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call