Abstract

Porphyrin is considered as one of the best candidates for various organic electronic devices, due to its molecular planarity and π-conjugation. Particularly, for the good performing OFETs based on porphyrin derivatives, they should have high crystallinity and close π–π stacking distance in solid state. However, π-extended dimeric porphyrin has never been introduced as a charge transport layer in OFETs. In this regard, we report here on the design and synthesis of new solution processable semiconducting π-extended porphyrin dimer (PD-1), and its OFET and OPVC characteristics. Due to strong π–π interactions, PD-1 showed high crystallinity in film state which displayed an excellent electrical characteristics with high hole mobility of 0.026cm2/Vs and high current on–off ratio of >105, when the device was fabricated in the mixed solvents of toluene and THF. This mobility is 1000 times better than that of a device fabricated from a solution either THF or toluene exclusively. Furthermore, the photovoltaic performance of PD-1 device shows a PCE of 0.58%. The effective π-conjugation and molecular planarity of π-extended dimeric porphyrin (PD-1) can lead to significant changes in the electrical characteristics of the devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call