Abstract

A deep learning pipeline was developed and used to localize and classify a variety of implants in the femur contained in whole-body post-mortem computed tomography (PMCT) scans. The results provide a proof-of-principle approach for labelling content not described in medical/autopsy reports. The pipeline, which incorporated residual networks and an autoencoder, was trained and tested using n = 450 full-body PMCT scans. For the localization component, Dice scores of 0.99, 0.96, and 0.98 and mean absolute errors of 3.2, 7.1, and 4.2 mm were obtained in the axial, coronal, and sagittal views, respectively. A regression analysis found the orientation of the implant to the scanner axis and also the relative positioning of extremities to be statistically significant factors. For the classification component, test cases were properly labelled as nail (N+), hip replacement (H+), knee replacement (K+) or without-implant (I−) with an accuracy >97%. The recall for I− and H+ cases was 1.00, but fell to 0.82 and 0.65 for cases with K+ and N+. This semi-automatic approach provides a generalized structure for image-based labelling of features, without requiring time-consuming segmentation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.