Abstract

Semi-supervised clustering aims to introduce prior knowledge in the decision process of a clustering algorithm. In this paper, we propose a novel semi-supervised clustering algorithm based on the information-maximization principle. The proposed method is an extension of a previous unsupervised information-maximization clustering algorithm based on squared-loss mutual information to effectively incorporate must-links and cannot-links. The proposed method is computationally efficient because the clustering solution can be obtained analytically via eigendecomposition. Furthermore, the proposed method allows systematic optimization of tuning parameters such as the kernel width, given the degree of belief in the must-links and cannot-links. The usefulness of the proposed method is demonstrated through experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.