Abstract
Histopathological analysis requires a lot of clinical experience and time for pathologists. Artificial intelligence (AI) may have an important role in assisting pathologists and leading to more efficient and effective histopathological diagnoses. To address the challenge of requiring a large number of labelled images to train deep learning models in breast cancer histopathological image classification, a self-training semi-supervised learning method consisting three components is proposed: Firstly, a pre-trained ResNet-18 was used to extract features and generate pseudo-labels for unlabelled data; secondly, a relational weight network based on the squeeze-and-excitation network (SENet) was trained to calculate the non-linear distance metrices between labelled and unlabelled samples, in order to improve the accuracy of pseudo-labelling; lastly, a consistency loss—maximum mean difference (MMD)—was added into the model to minimize the divergence between distributions of unlabelled and labelled samples. Extensive experiments were conducted on the open access BreakHis dataset. The proposed method outperformed the state-of-the-art semi-supervised methods at all tested annotated percentages (10–70%), and also achieved comparable performance with supervised methods at higher annotated percentages (50%, 70%).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.