Abstract

Convolutional neural networks (CNNs), successfully used in a great number of medical image analysis applications, have also achieved the state-of-the-art performance in breast cancer histopathology image (BCHI) classification problem recently. However, due to the large varieties among within-class images and insufficient data volume, it is still a challenge to obtain more competitive results by using deep CNN models alone. In this paper, we aim to explore the combination of CNN models with a milestone feature representation method in visual tasks, i.e., vector of locally aggregated descriptors (VLAD), for the BCHI classification, and further propose a novel aggregated deep global feature representation (ADGFR) for this problem. ADGFR adopts the deep features that are extracted from the fully connected layer to form an individual descriptor vector, and augments input images to generate different descriptors for achieving the final aggregated descriptor vector. The individual descriptor vector can effectively keep the global features of benign and malignant image, whose discriminability is further reinforced by the aggregate operation, leading to the more discriminant capability of ADGFR for BCHI. Extensive experiments on the public Break His dataset illuminate that our ADGFR can achieve the optimal classification accuracies of 95.05% at image level and 95.50% at patient level, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.