Abstract
Benchmark dose analysis aims to estimate the level of exposure to a toxin associated with a clinically significant adverse outcome and quantifies uncertainty using the lower limit of a confidence interval for this level. We develop a novel framework for benchmark dose analysis based on monotone additive dose-response models. We first introduce a flexible approach for fitting monotone additive models via penalized B-splines and Laplace-approximate marginal likelihood. A reflective Newton method is then developed that employs de Boor's algorithm for computing splines and their derivatives for efficient estimation of the benchmark dose. Finally, we develop a novel approach for calculating benchmark dose lower limits based on an approximate pivot for the nonlinear equationsolved by the estimated benchmark dose. The favorable properties of this approach compared to the Delta method and a parameteric bootstrap are discussed. We apply the new methods to make inferences about the level of prenatal alcohol exposure associated with clinically significant cognitive defects in children using data from six NIH-funded longitudinal cohort studies. Software to reproduce the results in this paper is available online and makes use of the novel semibmd R package, which implements the methods in this paper.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.