Abstract
This paper studies stable sheaves on abelian surfaces of Picard number one. Our main tools are semi-homogeneous sheaves and Fourier-Mukai transforms. We introduce the notion of semi-homogeneous presentation and investigate the behavior of stable sheaves under Fourier-Mukai transforms. As a consequence, an affirmative proof is given to the conjecture proposed by Mukai in the 1980s. This paper also includes an explicit description of the birational correspondence between the moduli spaces of stable sheaves and the Hilbert schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal für die reine und angewandte Mathematik (Crelles Journal)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.