Abstract

AbstractThis paper is concerned with semi-global stabilization of linear systems with actuator delay and energy constraints. Under the condition of null controllability by vanishing energy, the parametric Lyapunov equation based L2 low gain feedback is adopted to solve the problem. If the delay in the system is exactly known, a delay-dependent controller is designed and if the delay in the system is either time-varying or not exactly known, a delay-independent controller is established. The proposed approach is used in the linearized model of the relative motion in the orbit plane of a spacecraft with respect to another in a circular orbit around the Earth to validate its effectiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.