Abstract
In this paper, we introduce the concept of semi-continuous $g$-frames in Hilbert spaces. We first construct an example of semi-continuous $g$-frames using the Fourier transform of the Heisenberg group and study the structure of such frames. Then, as an application we provide some fundamental identities and inequalities for semi-continuous $g$-frames. Finally, we present a classical perturbation result and prove that semi-continuous $g$-frames are stable under small perturbations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.