Abstract
Generalized frames (in short, $g$-frames) are a natural generalization of standard frames in separable Hilbert spaces. Motivated by the concept of weaving frames in separable Hilbert spaces by Bemrose, Casazza, Grochenig, Lammers and Lynch in the context of distributed signal processing, we study weaving properties of $g$-frames. Firstly, we present necessary and sufficient con\-ditions for weaving $g$-frames in Hilbert spaces. We extend some results of \cite Bemrose, Casazza, Grochenig, Lammers and Lynch, and Casazza and Lynch regarding conversion of standard weaving frames to $g$-weaving frames. Some Paley-Wiener type perturbation results for weaving $g$-frames are obtained. Finally, we give necessary and sufficient conditions for weaving $g$-Riesz bases.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.