Abstract

The most common approach in dynamic analysis of engineering structures and physical phenomenas consists in finite element discretization and mathematical formulation with subsequent application of direct time integration schemes. The space interpolation functions are usually the same as in static analysis. Here on example of 1-D wave propagation problem the original implicit scheme is proposed, which contains the time interval value explicitly in space interpolation function as results of analytical solution of differential equation for considered moment of time. The displacements (solution) at two previous moments of time are approximated as polynomial functions of position and accounted for as particular solutions of the differential equation. The scheme demonstrates the perfect predictable properties as to dispersion and dissipation. The crucial scheme parameter is the time interval – the lesser the interval the more correct results are obtained. Two other parameters of the scheme – space interval and the degree of polynomial approximation have minimal impact on the general behavior of solution and have influence on small zone near the front of the wave.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.