Abstract

AbstractThe temperature increase that occurs during running of a polymer gear pair can be divided into two components: the nominal and flash temperatures. The latter denotes the short-term temperature increase that takes place during a gear meshing cycle. A thorough analysis of the flash temperature yields an insight into the heat dissipation process, which also determines the nominal temperature increase. We focus here on the flash component using numerical and analytical computation tools, with which we can obtain realistic predictions of the temperature increase during a gear meshing cycle. The analysis is performed using a decoupled procedure that involves a mechanical finite element analysis, followed by a semi-analytical temperature evaluation method based on the computed mechanical response of the system. With it, we obtain an improved flash temperature model that offers an accurate representation of the real life thermo-mechanical processes taking place at the gear teeth contact interfaces.Highlights Sliding friction during polymer gear meshing generates dominant part of heat losses. The developed flash temperature model is based on numerical and analytical tools. Meshing kinematics influence considerably the frictional losses and temperature rise. Flash temperature model applicable to any type of spur gear geometry. The model provides necessary groundwork for long term nominal temperature analysis.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.