Abstract

Abstract The presented work describes a computational method for carrying out a detailed and thorough examination of the flash temperature rise (i.e. the local ‘instantaneous’ temperature increase on a contact interface, due to frictional effects) present on the tooth flanks of a polymer gear pair, composed of a combination of POM and PA66 thermoplastics, during a given meshing cycle. The method involves a decoupled sequential procedure, where first the mechanical response of the gear teeth during a whole meshing cycle is analyzed using finite element analysis and, subsequently, a semi-analytical thermal analysis procedure is employed, with which the local flash temperature rise under a given tooth-pair contact can be evaluated. The method provides an accurate reproduction of the actual thermo-mechanical processes taking place at the gear teeth contact interfaces and allows for an investigation of the influence of deviations in the gear flank geometry and gear tolerances, while retaining a manageable enough form for application with moderate computational resources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.