Abstract

In the present study, steady state heat transfer in a slab is analysed by applying the principle of variation calculus to the entropy generation minimization. The governing equation of the phenomena is obtained by minimizing the total entropy generation over the slab by considering the irreversibility and variation of thermal conductivity as a function of spatial co-ordinates. The governing equation is solved to obtain the temperature distribution, internal heat generation due to irreversibility, entropy generation number and entropy transport into system. The apparent heat sources that come into existence because of the irreversibility in heat diffusion have made the minimization of entropy generation feasible.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.