Abstract

Background: Previous work revealed the existence of a severe thymic atrophy with massive loss of immature CD4<sup>+</sup>CD8<sup>+</sup> thymocytes in animals developing insulin-dependent diabetes, chemically induced by alloxan. Furthermore, the intrathymic expression of chemokines, such as CXCL12, is changed in these animals, suggesting that cell migration-related patterns may be altered. One molecular interaction involved in normal thymocyte migration is that mediated by soluble semaphorin-3A and its cognate receptor neuropilin-1. Objectives: We investigated herein the expression and role of semaphorin-3A in the migratory responses of thymocytes from alloxan-induced diabetic mice. We characterized semaphorin-3A and its receptor, neuropilin-1, in thymuses from control and diabetic mice as well as semaphorin-3A-dependent migration of developing thymocytes in both control and diabetic animals. Methods: Diabetes was chemically induced after a single injection of alloxan in young adult BALB/c mice. Thymocytes were excised from control and diabetic individuals and subjected to cytofluorometry for simultaneous detection of semaphorin-3A or neuropilin-1 in CD4/CD8-defined subsets. Cell migration in response to semaphorin-3A was performed using cell migration transwell chambers. Results: Confirming previous data, we observed a severe decrease in the total numbers of thymocytes in diabetic mice, which comprised alterations in both immature (double-negative subpopulations) and mature CD4/CD8-defined thymocyte subsets. These were accompanied by a decrease in the absolute numbers of semaphorin-3A-bearing thymocytes, comprising CD4<sup>–</sup>CD8<sup>–</sup>, CD4<sup>+</sup>CD8<sup>+</sup>, and CD4<sup>–</sup>CD8<sup>+</sup> cells. Additionally, immature CD4<sup>–</sup>CD8<sup>–</sup> and CD4<sup>+</sup>CD8<sup>+</sup> developing T cells exhibited a decrease in the membrane density of semaphorin-3A. The relative and absolute numbers of neuropilin-1-positive thymocytes were also decreased in diabetic mouse thymocytes compared to controls, as seen in CD4<sup>–</sup>CD8<sup>–</sup>, CD4<sup>+</sup>CD8<sup>+</sup>, and CD4<sup>–</sup>CD8<sup>+</sup> cell subpopulations. Functionally, we observed a decrease in the chemorepulsive role of semaphorin-3A, as revealed by transwell migration chambers. Such an effect was seen in all immature and mature thymocyte subsets. Conclusions: Taken together, our data clearly unravel a disruption in the normal cell migration pattern of developing thymocytes following chemically induced insulin-dependent diabetes, as ascertained by the altered migratory response to sempahorin-3A. In conceptual terms, it is plausible to think that such disturbances in the migration pattern of thymocytes from these diabetic animals may exert an impact in the cell-mediated immune response of these mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.