Abstract

In this study, we addressed two primary challenges: firstly, the issue of domain shift, which pertains to changes in data characteristics or context that can impact model performance, and secondly, the discrepancy between semantic similarity and geographical distance. We employed topic modeling in conjunction with the BERT architecture. Our model was crafted to enhance similarity computations applied to geospatial text, aiming to integrate both semantic similarity and geographical proximity. We tested the model on two datasets, Persian Wikipedia articles and rental property advertisements. The findings demonstrate that the model effectively improved the correlation between semantic similarity and geographical distance. Furthermore, evaluation by real-world users within a recommender system context revealed a notable increase in user satisfaction by approximately 22% for Wikipedia articles and 56% for advertisements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.