Abstract
Semantic textual similarity between sentences is indispensable for many information retrieval tasks. Traditional lexical similarity measures cannot compute the similarity beyond a trivial level. Moreover, they only can capture the textual similarity, but not semantic. In this paper, we propose a method for semantic textual similarity that leverages bilingual word-level semantics to compute the semantic similarity between sentences. To capture word-level semantics, we employ distribute representation of words in two different languages. The similarity function based on the concept-to-concept relationship corresponding to the words is also utilized for the same purpose. Multiple new semantic similarity measures are introduced based on word-embedding models trained on two different corpora in two different languages. Apart from these, another new semantic similarity measure is also introduced using the word sense comparison. The similarity score between the sentences is then computed by applying a linear ranking approach to all proposed measures with their importance score estimated employing a supervised feature selection technique. We conducted experiments on the SemEval Semantic Textual Similarity (STS-2017) test collections. The experimental results demonstrated that our method is effective for measuring semantic textual similarity and outperforms some known related methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.